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ABSTRACT

Weintroduce a minimal-risk method for estimating the frequencies of amino acids at conserved
positions in a protein family. Our method, called minimal-risk estimation, finds the optimal
weighting between a set of observed amino acid counts and a set of pseudofrequencies, which
represent prior information about the frequencies. We compute the optimal weighting by
minimizing the expected distance between the estimated frequencies and the true population
frequencies, measured by either a squared-error or a relative-entropy metric. Our method
accounts for the source of the pseudofrequencies, which arise either from the background
distribution of amino acids or from applying a substitution matrix to the observed data. Our
frequency estimates therefore depend on the size and composition of the observed data as well
as the source of the pseudofrequencies. We convert our frequency estimates into minimal-
risk scoring matrices for sequence analysis. A large-scale cross-validation study, involving 48
variants of seven methods, shows that the best performing method is minimal-risk estimation
using the squared-error metric. Our method is implemented in the package EMATRIX, which
is available on the Internet at http://motif.stanford.edu/ematrix.

Key words: frequency estimates, Hidden Markov models, position-specific scoring matrices, pro-
files, protein families, pseudocounts, sequence analysis

1. INTRODUCTION

MODERN RESEARCH in molecular biology depends heavily upon computer-based techniques to analyze
and characterize new sequences. For example, one well-established technique is similarity search,
exemplified by FASTA (Pearson and Lipman, 1988) or BLAST (Altschul et al., 1990), which compares an
entire query sequence against target sequences in a database. More recently, sequence analysis techniques
have been developed based on pattern matching. In this approach, targets are relatively short patterns that
represent conserved regions, or alignment blocks, that characterize a particular protein family. Therefore, a
query sequence may be identified by matching one of its segments against a database of alignment blocks.
Examples of such databases include BLOCKS (Henikoff and Henikoff, 1991), PRINTS (Attwood and Beck,
1994), and PIMA (Worley et al., 1995). '

However, for the purposes of matching in sequence analysis, we must represent each alignment block as
a symbolic or numerical pattern. Symbolic patterns, which we will not cover in this paper, consist of regular
expressions or discrete motifs. Examples of motif databases are PROSITE (Bairoch, 1992) and IDENTIFY (Nevill-
Manning et al., 1990). Numerical patterns on the other hand, consist of a matrix of probability estimates or
scores. Each position in the alignment block is represented by a column of frequencies or scores in the
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matrix. There are several examples of numerical representations, including weight matrices (Stormo and
Hartzell, 1989; Staden, 1990), profiles (Gribskov et al., 1987), position-specific scoring matrices (Henikoff,
1996), hidden Markov models (Krogh et al., 1994; Eddy, 1996), and Gibbs sampling (Lawrence et al., 1993).
Numerical representations are closely related, and one form may often be converted into another. Therefore,
we will use the term “scoring matrix” to denote a generic numerical representation, although our results
generalize to other numerical representations.

The basic problem faced by most numerical methods is how to convert a vector of observed amino acid
counts into a vector of frequencies or a vector of scores. The set of observed counts is finite and almost
always contains zero counts for one or more amino acids. However, zero frequencies are undesirable for
sequence analysis, because they may exclude true but unusual members of a given family. Therefore, we must
introduce some methodology to augment the finite set of observed counts and to estimate the true population
frequencies. Essentially, the problem is one of frequency estimation, and the predominant method has been
to add pseudocounts, or artificial counts, to the observed counts.

However, the Bayesian theory underlying the pseudocount approach leaves open the question of how many
pseudocounts to add, or equivalently, how much weight to assign to the prior information. This open question
has spawned many different methods for combining pseudocounts with observed counts. Existing methods
are based largely on intuitive or empirical grounds, which appears to suggest that no optimal method exists.
In this paper, however, we show how optimality may be introduced to solve the problem.

Specifically, we define optimality using a criterion called risk, which is the expected distance between
the estimated frequencies and the true population frequencies. Our approach, called minimal-risk estimation
computes an optimal weighting between the prior information and the observed counts. In short, it computes
the optimal number of pseudocounts to add. The resulting frequency estimates may then be converted to
scoring matrices in the usual log-odds manner, resulting in minimal-risk scoring matrices, or MRSMs.

Our method models the source of the pseudofrequencies, and provides different formulas for different
sources. Pseudofrequencies represent domain knowledge either about the background distribution of amino
acids (e.g., that leucine is generally more common than cysteine) or about similarities and dissimilarities
between amino acids (e.g., that isoleucine and valine are chemically similar and likely to substitute for
each other). We call these two sources background pseudofrequencies and substitution pseudofrequencies,
respectively. Estimation using background and substitution pseudofrequencies is also called Bayesian and
empirical Bayesian estimation. Whereas background pseudocounts represent prior knowledge that is the
same for all possible observations, substitution pseudocounts depend on the observed data, and they have
therefore been called data-dependent pseudocounts by Tatusov et al. (1994).

Another consideration in our method is the measurement of risk, which is essentially a distance mea-
surement. We consider two metrics, one based on squared-error distance and one based on relative-entropy
distance. Thus, we present a total of four solutions in this paper, corresponding to the two metrics for risk
and the two sources of pseudofrequencies. However, we show empirically that the best solution appears to
combine the squared-error metric with substitution pseudofrequencies.

Our minimal-risk technique is grounded in statistical decision theory, and follows closely a statistical
approach developed for estimating cell frequencies in contingency tables (Bishop et al., 1975). However, the
solution for contingency tables corresponds to only one of our cases: a squared-error metric with background
pseudofrequencies. Accordingly, in this paper, we extend statistical decision theory to handle the relative-
entropy metric and substitution pseudofrequencies, which are fundamental in computational biology.

In contrast with existing approaches, which have been developed largely through empirical trial and error,
our theoretical approach attempts to achieve optimal accuracy in a wide range of situations. Our method does
not require training on an existing database, nor is it fine-tuned to perform well for a particular substitution
matrix. In this paper, we show that our approach does indeed yield superior results. We examine 48 different
variations of seven methods for constructing scoring matrices, including Dirichlet-mixture (Brown et al., 1993,
Sj6lander et al., 1996) and average-score (Gribskov et al., 1987) methods, using a large cross-validation test.
Our experiment shows that the most accurate prediction method is provided by minimal-risk scoring matrices.

2. METHODS

2.1. Pseudocount estimation

In the estimation problem, we are given a vector C of observed counts. For our problem, which involves
amino acids, this vector is of length 20. We assume that C is generated by true population frequencies p,
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which are hidden from us and cannot be known. We wish to produce a vector p* of frequency estimates, which
should approximate p as well as possible.

In the pseudocount approach, we introduce domain knowledge in the form of a vector A of pseudofre-
quencies. As we discussed previously, we may use either background pseudofrequencies, represented by q,
or substitution pseudofrequencies, represented by r. The observed counts and pseudofrequen01es may be
combined by adding them in some proportion. The number of observed counts is N = Z i=1Cj- The number
of pseudocounts is B, a quantity that must be specified by a particular pseudocount method. The result is the
pseudocount frequency estimate

C; BA;
B, A — j=1,...,20 1
pi(B,A) = N+B+N+B J 1)
Equivalently, we may express the problem in terms of weights « and 8:
piB N =ap;+Br;, a+p=1 2

In this representation, we normalize the observed counts to give observed frequencies p, where p; = C;/N.
The two representations are essentially equivalent, as expressed by the relationship

N B
" N+B ﬁ_N+B 3

However, in this paper, we will find the weight formulation in Equation 2 to be more suitable than the count
formulations in Equation.

Background pseudofrequencies q may be obtained from the distribution of amino acids in a large sequence
database. Such pseudofrequencies are independent of the observed counts. In contrast, substitution pseudo-
frequencies r depend very much on the observed data. Similarity information is represented by a substitution
matrix M, such as the PAM (Dayhoff et al., 1978), MDM (Jones et al., 1992), Gonnet (1992), or BLOSUM
(Henikoff and Henikoff, 1992) series of matrices. Entry M ik in the matrix represents the conditional probability
of seeing amino acid j given amino acid k. Therefore, we compute substitution pseudofrequencies from the
observed frequencies p by matrix multiplication:

20 20
rj=Y Mupe=) MyCi/N @
k=1 k=1

The end result is to give higher pseudofrequencies to those amino acids similar to the observed ones, and
lower frequencies to dissimilar amino acids.

2.2. Minimal-risk estimation

In minimal-risk estimation, our primary goal is to derive a relationship between the true frequencies p,
which are constant for a particular problem, and the optimal weight 8*, where the asterisk denotes optimality.
Although the true frequencies are actually unknown to the estimator, we wish nevertheless to derive the ideal
relationship based on the true p. The vector of observed counts is a set of random variables. Each vector C
occurs with probability according to a multinomial model:

Pr(C) = N 21 pCzo=__F(1_VLf9[ ¢
CiCr--Co ) 71 72 TR TP T(C 4+ 1)

Let us view the situation geometrically, as in Fig. 1A. The position of the true frequencies p is fixed. The
position of the observed frequencies p is random, according to the multinomial model. In the pseudocount
method, each vector of observed counts has a corresponding a vector A of pseudofrequencies. For background
pseudofrequencies, this position is constant; for substitution pseudofrequencies, it varies with the observed
data and is therefore also random. The pseudocount method constrains the solution to lie along the line that
connects p and A. For any particular instance of p and A, we advocate choosing the parameter value that
minimizes the distance, or loss, to the true frequencies p. That is, we should minimize

&)

j=1

20

Z (p; —p j)z [Squared error]
* — In* — 2 — j=1 6
Lp*p=Ip"—plI° = (6)

Z P} log( —’) [Relative entropy]
j=1
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A

FIG. 1. Geometric interpretation of statistical decision theory. The goal is to find the value of p* that minimizes the
expected distance to the true frequencies p. The estimate p* is obtained by weighting the pseudofrequencies A by 8*
and the observed frequencies p by (1 — 8*). (A) Relationships when pseudofrequencies are distant from the observed
frequencies. (B) Relationships when the pseudofrequencies are close to the observed frequencies; 8* may exceed 1 in
order to minimize risk. (Figure 1A is adapted from Bishop et al., 1975.)

kel

Here, we have measured the distance using two metrics: squared error and relative entropy. We will develop
and test a theory for each metric, although the squared-error metric will eventually prove to work better for
sequence analysis.

The loss is a random variable that varies according to the distribution of observed counts and pseudo-
frequencies. Therefore, we can consider the expected loss, or risk, over all possible vectors of observed
counts:

20

Z E (P}‘ - Pj)2 [Squared error]

R=EL®" P =1} . -
Y E (P,* log (—1)) [Relative entropy]
j=1 pj

In this equation, we have used the fact that expectation is a linear operator so the expectation of a sum is
equal to the sum of expectations.

We may now establish a relationship between the true frequencies p and the optimal weight 8*. We advocate
choosing the weight 8* to minimize risk, or expected loss. We have four cases to consider, corresponding to
the two metrics for loss and the two sources of pseudofrequencies. Solutions for the squared-error metric,
which we derive in the Appendix, can be expressed in closed form:

1 —_
= E’ =1 p’ . [Background]
ﬁ*— 1_2j=1P,+NZJ_1(PJ q]) (8)
L X7 Mips + pitps = 5))] [Substitution]
L+ 250 [N = Do) — 5,0 —2Mj;p; + X7 Mipi]
where
20
sj = ZMjkPk €))
k=1

In contrast, solutions for the relative-entropy must be solved numerically; details are given in the Appendix.
The solution for background pseudofrequencies in Equation 8 is equivalent that obtained by Bishop et al.
(1975), whereas the solution for substitution pseudofrequencies is a new result.

These relationships are ideal, because they depend on knowing the true frequencies p, which are unknown.
To obtain frequency estimates for a particular set of data, we make use of a plug-in statistical technique
(Bishop et al., 1975). We make an initial estimate for p as a starting point, and then use the optimal weighting
to obtain a better estimate. For our initial estimate of p, we choose B = +/N pseudocounts, or

o€ YNA
" N++N N+JN

10)
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Our starting point is the estimate used in Gibbs sampling (Lawrence et al., 1993), and has been found to work
well empirically. Incidentally, this starting point corresponds to the minimax solution when the pseudofre-
quencies are uniform (Trybula, 1958); that is, A 7 =10.05 for all j. Note that our initial estimate accounts for
the size of the observed sample, but not its composition or the composition of the pseudofrequencies. Our
method is able to improve upon the initial estimate by accounting for these factors.

The plug-in technique acts as a regularizer, by improving our estimate of p* from a well-motivated starting
point. However, one might reason that the new estimate p* could serve as a new starting point, and that we
could plug in this value into our minimal-risk equations to obtain a revised estimate. Iteration in this fashion
converges to a fixed point, which constitutes a self-consistent estimator (Tarpey and Flury, 1996). Self-
consistent estimation is closely related to many statistical approaches, including expectation maximization
(Dempster et al., 1977).

However, a self-consistent estimator may not be suitable for our particular task, because data is often scarce.
When the number of observed data points is small, an iterative approach can lead to progressive overfitting
and poor estimates. The behavior of iterative estimation is demonstrated in Fig. 2, for both small and large
data sets. When a small data set contains no clear pattern, B diverges progressively to 1, indicating that the
observed data should be ignored and the background frequency should be used instead.

Although self-consistent estimation might seem reasonable for a single estimation problem, our experience
shows that it can generate poor scoring matrices for sequence analysis. A scoring matrix requires solution
of several estimation problems of the same size, because each position in the block has the same number
of observations. For small blocks in which progressive overfitting occurs, self-consistency produces scoring
matrices that are almost discrete: they ignore the observed data in most positions and allow only observed
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FIG. 2. Behavior of iterative minimal-risk estimation. The left graph shows the behavior for small data sets (12 obser-
vations); the right graph, on a different vertical scale, shows the behavior for large data sets (60 observations). Each graph
contains several curves, each representing a particular set of observations, showing how the estimate for 8 changes with
each iteration. The initial value of 8 at iteration O is the square-root estimate, ~/N /(N + +/N). Iteration continues until
the parameter 8 converges, with a tolerance of 0.0001. The method used was the unweighted squared-error method with
background pseudofrequencies. Data sets were drawn from various columns of the first 12 and 60 sequences of block 30B
(RNP-_1) of the BLOCKS database. For small data sets, iterative estimation sometimes leads to progressive overfitting. For
large data sets, a single step obtains an estimate that is close to the iterative estimate.
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amino acids in other positions. Because the progressive overfitting problem occurs typically in small blocks,
self-consistent estimates often generate scoring matrices that are unsuitable for sequence analysis. On the other
hand, the single-step estimate not only avoids the overfitting problem for small blocks but also approaches
the self-consistent estimate for large blocks, as Fig. 2 shows.

Figure 2 also demonstrates how our procedure treats the amount of information in observed data. When the
observed data has a strong pattern, such as the data set containing 51 counts of phenylalanine, our estimate
for B is relatively small, signifying a relatively strong emphasis on the observed data. When the observed
data has a weaker pattern, such as the data set containing 16 counts of glutamate and 11 counts of lysine, our
estimate for B is relatively large, signifying a relatively strong emphasis on the background frequency. Our
procedure also accounts for the size of the observed data, as seen by the generally lower values of g for large
data sets compared with those for small data sets.

2.3. Existing methods

Several other methods have been proposed for choosing the single parameter in the pseudocount approach,
including the constant, square-root, and step-function methods. The constant and step-function methods have
been developed empirically, whereas the square-root method has a theoretical basis as a minimax solution,
as mentioned in the previous section. These methods use the count formulation in Equation 1 and therefore
select the number B of pseudocounts.

The constant method (Henikoff ef al., 1995) sets B to be a large constant number. Empirically, the value 50
has been found to work well. Therefore, when N is less than 50, pseudofrequencies will have greater weight;
when N is greater than 50, the observed frequencies will have greater weight.

The square-root method (Lawrence et al., 1993; Tatusov et al., 1994) sets B to be equal to /N. In the
square-root method, the weight of the pseudofrequencies is smaller than that of the observed frequencies for
N>1.

The step-function method (Henikoff and Henikoff, 1996) sets B to be proportional to the number of unique
amino acid residues observed. In other words, if the count vector contains A non-zero values, then empirical
results suggest setting B to be equal to 5A. We refer to this method as the step-function method, because the
value of B increases by step intervals of 5, from 5 through 100.

Note that the constant and square-root methods depend solely on the size N of the sample. In contrast,
the step-function method depends also on the composition of the sample. The step-function method assigns
greater weight count vectors that are concentrated in one or a few amino acids, and assigns less weight to
count vectors that are distributed over several amino acids. Our minimal-risk solution also depends on the
composition of the sample, but with more resolution than the step-function method. Our solution considers
not just the number of different amino acids represented, but also their relative frequencies.

In addition to evaluating these three single-parameter methods, we also evaluate an estimation method
based on a Dirichlet mixture model (Sjolander et al., 1996). Dirichlet mixture models estimate frequencies
by combining several component, or prior, distributions; nine components have been found to work well
empirically. These prior distributions are obtained by training extensively on a large database of protein
families. Given a new set of observed counts, the Dirichlet-mixture method combines each prior distribution
according to the likelihood that it could generate the observed counts. Therefore, the Dirichlet-mixture method
estimates multiple parameters, one for each component.

The methods we have described so far all estimate population frequencies, rather than scores per se.
Ultimately, though, each column of a scoring matrix consists of a vector S of scores. There is general consensus
that the scores can be derived from frequencies using a log-odds relationship (Berg and von Hippel, 1987;
Stormo and Hartzell, 1989):

S; =log (p}/4;) an
where g; is the background frequency for amino acid j.
One exception to this frequency estimate approach is the average-score or profile method (Gribskov et al.,
1987). This method multiplies the observed frequencies by a substitution score matrix T, as follows:

20
§; = Z Tix P
k=1

The substitution score matrix T is typically derived from a substitution matrix M by a log-odds relationship.
Each of the frequency estimate methods requires pseudofrequencies, which may be either background or
substitution pseudofrequencies. Therefore, we can speak of a constant background-pseudofrequency method
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and a constant substitution-pseudofrequency method. Moreover, when substitution pseudofrequencies are
involved, the particular substitution matrix must be specified. Hence, we can speak of a square-root BLOSUM
30, a square-root BLOSUM 62, and a square-root BLOSUM 100 method. The average-score method, which does
not use pseudofrequencies, nevertheless also requires specification of a substitution score matrix. Therefore,
each of the methods can be implemented as several different variants.

2.4. Weighting scatterplots

Single-parameter pseudocount methods differ in their relative weighting of the observed data and prior
information. We illustrate the differences among these methods graphically using weighting scatterplots. In
general, as shown in Equation 3, a major determinant of 8 is the size N of the observed data, with 8 decreasing
as N increases. A weighting scatterplot plots these two parameters against each other. We compute a scatterplot
empirically by applying a pseudocount method to several alignment blocks with varying values of N.

Weighting scatterplots for the constant, square-root, and step-function methods are shown in the first row
of Fig. 3. The constant and square-root methods select B, and hence B, solely as a function of N. Therefore,
the points on these two scatterplots lie on a single curved line.

In contrast, the step-function method shows 20 discrete curves, each corresponding to one of the 20 choices
for B. Therefore, the step function yields up to 20 different values of g for a given value of N. This variability
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FIG. 3. Weighting scatterplots for different pseudocount methods. Each curve plots the value of B against the size
of the sample. The top row has scatterplots for the constant, square root, and step function methods. The middle row
has scatterplots for the squared-error method, for various choices of pseudofrequencies. From left to right, these are
background pseudofrequencies, followed by substitution pseudofrequencies using the BLOSUM 30, 62, and 100 matrices.
The bottom row has scatterplots for the relative-entropy method, for the same choices of pseudofrequencies.
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allows the step function method to consider not only the size, but also the approximate composition, of the
observed counts.

The remainder of Fig. 3 shows weighting scatterplots for the minimal-risk method over two loss metrics
and a variety of pseudofrequencies. The scatterplots show that the minimal-risk method selects widely varying
values of B for a given value of N. The fine variability within each graph, at each value of N, shows how the
minimal-risk method accounts for the exact composition of the observed counts.

Furthermore, the minimal-risk method shows variability across graphs, showing how it models the differ-
ent sources of pseudofrequencies. As the substitution matrix progresses from greater evolutionary distance
(BLOSUM 30) to smaller evolutionary distance (BLOSUM 100), the weight given to the pseudofrequencies
generally increases.

In some cases, especially for the BLOSUM 100 matrix, the value for 8 even exceeds 1. The reason for this
can be seen in Fig. 1B. Note that the distance B is a relative distance, defined by the endpoints p and X. If
the two endpoints are close together, then 8 has a different scale than if the two endpoints are far apart. The
distance between the endpoints is determined by the substitution matrix M. For smaller evolutionary distances,
the pseudofrequencies A are close to the observed frequencies p, and B* must increase to minimize risk. In
extreme cases, the minimal-risk method chooses 8* to be greater than 1, indicating that it extrapolates beyond
the given pseudofrequencies to minimize expected loss. Incidentally, the ability to choose such values for B
is largely the motivation for our use of the weight formulation in Equation 2 rather than the count formulation
in Equation 1.

3. RESULTS

3.1. Cross-validation test

To evaluate our method and compare it with existing methods for constructing scoring matrices, we devel-
oped a large-scale cross-validation test that measures how accurately a method predicts other members of a
given family. The large scale is important to achieve comparisons that are statistically significant. We used
the BLOCKS 9.3 (March 1997) database (Henikoff and Henikoff, 1991) as a source of protein families. This
database contains 3417 alignment blocks that have been used widely in bioinformatics research.

We developed a two-fold cross-validation test. Each block was divided randomly into two parts. For half
of the test, the first part served as a training set and the second part served as a test set. For the other half of
the test, the two parts swapped roles as training and test sets. We tested each method by using the training set
as the basis for a scoring matrix, and then using the matrix to identify other members of the given family. The
source of possible identifications was the SWISSPROT 32 sequence database (Bairoch and Apweiler, 1996).
Because scoring matrices are numeric, each method essentially ranked sequences in the database, according
to their estimated closeness to the given family.

We used each test set as the benchmark for evaluating accuracy. In order to avoid penalizing sequences
not in the test set but nevertheless in the given family, we used the PROSITE 13.0 database (Bairoch e al.,
1997). If a predicted sequence was not in the test set but included in the PROSITE database as a member of
the family, we considered it neither a true positive nor a false positive. We converted each ranked list of true
and false positives into an equivalence number (Pearson, 1995). The equivalence number is the rank where
the number of true positives with lower scores is equal to the number of false positives with higher scores.
This number measures how well a method discriminates between true positives and false positives, and it is
robust to outliers in the test set. Therefore, the cross-validation test produced a series of equivalence numbers
for each method.

Although the BLOCKS 9.3 database contains over 3000 alignment blocks, it was too computationally ex-
pensive to test all blocks for all methods. We excluded from our test those blocks that were the easiest to
characterize, and therefore least discriminating, as indicated by a zero equivalence score on a screening run
using the step-function BLOSUM 62 method. Of the 3417 alignment blocks in the database, 2408 (70%) had
an equivalence number of zero. We excluded these blocks from our cross-validation test, leaving 1009 blocks
with a screening equivalence number of 1 or more. To create our cross-validation test, we randomly divided
each of these blocks into two parts. This random division was different from that used for the screening step,
so the cross-validation test used a different set of training and test sets than the screening step did. Random
division led to 33 blocks with an empty part, leaving 976 blocks. Our two-fold cross-validation test therefore
consisted of 1952 training and test sets.
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We implemented the seven approaches discussed in Methods (counting squared error and relative entropy
as separate methods), combining each approach with both background and substitution pseudofrequencies,
as appropriate. Background pseudofrequencies were taken from SWISSPROT version 32. We used three sub-
stitution matrices: the BLOSUM 30, BLOSUM 62, and BLOSUM 100 matrices from BLOSUM version 5.0. We
implemented and evaluated the nine-component Dirichlet-mixture method of Sjolander et al. (1996).

We also studied the effect of sequence weighting, which has been shown to improve the sensitivity of
sequence analysis by increasing the weight of distant members of a given family. The literature (Henikoff,
1996) and our own experience suggest that existing weighting techniques generally give similar results. Hence,
we implemented a simple position-specific weighting scheme proposed by Henikoff and Henikoff (1994).
Thus, we tested each method on both unweighted and weighted training data. Altogether, we performed our
cross-validation test on 48 different variants of the seven approaches. For simplicity, we will henceforth call
each of these variants a separate “method.”

3.2. Ranking of methods

We ranked methods by comparing them pairwise and aggregating the results, essentially equivalent to
conducting a round-robin tournament. For each pairwise comparison of method A versus method B, we
scored the number of blocks for which A did better (points for, PF) and the number for which B did better
(points against, PA), based on their equivalence scores. We performed a binomial test for obtaining PF points
out of PF + PA total trials, assuming that the probability of obtaining each point was 0.5. Based on this test,
we labeled each pairwise comparison as a win or loss (if the difference was statistically significant) or a tie
@f it was not significant).

We aggregated these results by totaling wins, losses, and ties for each method against competing methods
under a significance threshold of p < 0.05. If two or more methods had equivalent ranks under this threshold,
we used the wins, losses, and ties under a looser threshold of p < 0.20 to differentiate their ranks. The resulting
rankings are shown in Table 1.

These rankings show that the best-performing method was the minimal-risk method using the squared-error
metric, BLOSUM 100 substitution pseudofrequencies, and no sequence weighting. This method outperformed
all 47 other methods, of which 40 wins were statistically significant at p < 0.05. The second best method was
the same method, except with a weighted training set. The third best method was the weighted step-function
BLOSUM 100 method, followed by the BLOSUM 62 version of the same method.

The rankings are summarized in Table 2. This table shows the rankings for each method as a function of
the source of prior information and sequence weighting. Overall, the squared-error method performed well
over a wide range of conditions. The step-function method performed almost as well. Among the remaining
pseudocount methods, the constant method was generally the next best method, followed by the square-root
method and the relative-entropy method. The average-score method appeared to give the worst results. The
Dirichlet-mixture method performed well when the sequences were weighted, but poorly when they were
not.

With the exception of the Dirichlet-mixture method, the presence of sequence weighting had relatively
little influence on the rankings. Sequence weighting usually improved results slightly, although it appears to
have worsened the results for the square-root method in each case. In particular, the squared-error method
was affected only minimally by the presence of sequence weighting.

The choice of pseudofrequencies had a much greater effect on the results. For almost all methods, substi-
tution pseudofrequencies based on the BLOSUM 100 matrix improved performance on our test relative to the
BLOSUM 62 and BLOSUM 30 methods. One exception is the constant method with a BLOSUM 62 matrix and se-
quence weighting. One possible explanation is that the choice of 50 pseudocounts was chosen empirically for
that particular matrix and sequence weighting (Henikoff and Henikoff, 1996). Background pseudofrequencies
generally did relatively poorly.

3.3. Previous studies

Previous studies of scoring matrices have been performed by other researchers. Karplus (1995) studied
methods from a theoretical perspective, rather than empirical performance in sequence analysis. He computed
an information-based encoding cost for various methods and obtained the best results for Dirichlet mixture
models that he optimized for each particular value of N. However, he tested a specific set of pseudocount
methods different from those in the literature. His pseudocount methods are roughly equivalent to a con-
stant method where B =1; a pure pseudocount method with o =0; and a “scaled” pseudocount method
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TABLE 1. RANKING OF METHODS
p <0.05 p <020
Rank Method Wins Losses Ties Wins Losses Ties

1 Squared error, BLOSUM 100, unweighted 40 0 7 44 0 3

2 Squared error, BLOSUM 100, weighted 38 0 9 42 0 5

3 Step function, BLOSUM 100, weighted 38 0 9 40 0 7

4 Step function, BLOSUM 62, weighted 37 0 10 41 0 6

5 Dirichlet mixture, weighted 37 0 10 37 4 6

5 Constant, BLOSUM 62, weighted 37 0 10 37 4 6

7 Squared error, BLOSUM 62, unweighted 37 1 9 37 1 9

7 Step function, BLOSUM 100, unweighted 37 1 9 37 1 9

9 Squared error, BLOSUM 62, weighted 37 1 9 37 2 8
10 Step function, BLOSUM 62, unweighted 36 1 10 37 3 7
11 Constant, BLOSUM 100, weighted 36 1 10 37 4 6
12 Constant, BLOSUM 100, unweighted 33 10 4 34 11 2
13 Step function, BLOSUM 30, weighted 31 10 6 34 11 2
14 Squared error, BLOSUM 30, weighted 30 11 6 32 11 4
15 Squared error, BLOSUM 30, unweighted 30 11 6 31 14 2
16 Constant, BLOSUM 62, unweighted 26 12 9 28 13 6
17 Square root, BLOSUM 100, unweighted 26 13 8 28 13 6
18 Step function, BLOSUM 30, unweighted 25 12 10 29 15 3
19 Squared error, Background, unweighted 23 15 9 23 16 8
20 Squared error, Background, weighted 22 15 10 24 17 6
20 Square root, BLOSUM 100, weighted 22 15 10 24 17 6
22 Square root, BLOSUM 62, unweighted 22 16 9 24 17 6
23 Square root, BLOSUM 62, weighted 20 17 10 23 18 6
24 Step function, Background, weighted 20 17 10 21 18 8
25 Constant, BLOSUM 30, weighted 19 19 9 19 22 6
26 Relative entropy, Background, weighted 19 21 7 20 23 4
27 Step function, Background, unweighted 17 19 11 19 22 6
28 Square root, BLOSUM 30, unweighted 15 22 10 18 24 5
29 Square root, BLOSUM 30, weighted 13 24 10 17 25 5
30 Dirichlet mixture, unweighted 11 26 10 11 27 9
31 Constant, Background, weighted 11 27 9 12 29 6
32 Relative entropy, Background, unweighted 11 28 8 12 28 7
33 Relative entropy, BLOSUM 100, weighted 10 26 11 10 29 8
34 Square root, Background, weighted 10 29 8 11 29 7
35 Square root, Background, unweighted 9 28 10 10 29 8
36 Constant, BLOSUM 30, unweighted 9 29 9 10 30 7
37 Relative entropy, BLOSUM 62, weighted 8 29 10 9 32 6
38 Relative entropy, BLOSUM 100, unweighted 8 34 5 9 35 3
39 Relative entropy, BLOSUM 62, unweighted 7 36 4 8 36 3
40 Average score, BLOSUM 100, weighted 6 33 8 7 35 5
41 Constant, Background, unweighted 5 36 6 6 39 2
42 Relative entropy, BLOSUM 30, weighted 5 39 3 5 40 2
43 Average score, BLOSUM 62, weighted 3 39 5 3 40 4
44 Relative entropy, BLOSUM 30, unweighted 3 42 2 4 42 1
45 Average score, BLOSUM 100, unweighted 3 42 2 3 43 1
46 Average score, BLOSUM 62, unweighted 2 45 0 2 45 0
47 Average score, BLOSUM 30, weighted 1 46 0 1 46 0
48 Average score, BLOSUM 30, unweighted 0 47 0 0 47 0

Each line indicates the ranking, followed by the method used, the source of pseudofrequencies if applicable, and the presence or absence
of sequence weighting. Lines in italics represent methods introduced in this paper. The columns indicate the numbers of statistically
significant wins, losses, and ties for each method when compared pairwise against other methods. Rankings are based primarily at a
statistical significance of p < 0.05, with equal ranks broken at a statistical significance of p < 0.20. Remaining equal ranks are indicated
by duplicate ranks.
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TABLE 2. SUMMARY OF RANKINGS

Const Sq root Step Sq err Rel ent Avg sc Dir
Prior information U w U w u wW U w U w U w uv w

BLOSUM 100 12 11 17 20 7 3 1 2 38 33 45 40

BLOSUM 62 16 5 22 23 10 4 7 9 39 37 46 43

BLOSUM 30 36 25 28 29 18 13 15 14 44 42 48 47

Background 41 31 35 34 27 24 19 20 32 26

9 components 30 5

Each entry indicates the ranking for a particular method, as a function of the prior information used and the presence of sequence
weighting. The letter U indicates unweighted training sets; W indicates a weighted training sets. The methods are abbreviated as follows:
Const, constant; Sq root, square root; Step, step function; Sq err, squared error; Rel ent, relative entropy; Avg sc, average score; Dir,
Dirichlet mixture.

with B=1/N. He found that the scaled pseudocount method gave results almost as good as his Dirichlet
models.

Other studies have looked at the behavior of scoring matrices in more realistic biological tasks. Tatusov et al.
(1994) studied nine alignment blocks for which the true family members were chosen manually. They studied
the Dirichlet-mixture and average-score methods, as well as the square-root method with both background and
BLOSUM 62 pseudofrequencies. Training sets in their studied were not weighted. They found that the Dirichlet-
mixture method performed best, followed by similar performances between the square-root BLOSUM 62 and
average-score methods; the background square-root method performed worst. In our study, we found that
these methods generally did poorly, with ranks of 30, 22, 46, and 35, respectively.

Henikoff and Henikoff (1996) studied nine different methods for constructing scoring matrices, using 1673
alignment blocks from BLOCKS 5.0. All training sets were weighted according to same weighting method
that we used. They used BLOSUM 62 as needed for pseudofrequencies, and PROSITE 12 as their criterion for
family membership. They compared each method against a control method, based on odds ratios. Henikoff and
Henikoff found that the step-function BLOSUM 62 method performed best, followed by similar performances by
the constant substitution-pseudofrequency method and Dirichlet-mixture method. The methods they studied,
in their order of performance, correspond to those ranked 4, 5 (tie), 5 (tie), 34, 23, and 43 in our study. Thus,
our relative ranking and theirs were roughly similar.

4. DISCUSSION

In this paper, we have presented a theory for weighting the relative importance of observed data and prior
information in characterizing protein families. Whereas previous methods have relied on intuitive or empirical
grounds, our method is based on an objective criterion and model of the source of pseudofrequencies. Our
objective criterion is to minimize risk, using either a squared-error or a relative-entropy metric. Our formulas
for minimizing risk are based on models of the source of the pseudofrequencies: whether they are background
or substitution pseudofrequencies, and if they are substitution pseudofrequencies, the substitution matrix used.

We have conducted a large-scale study to test our method and compare it with existing ones. Our study
examines more methods than previous studies. In particular, we have studied several possible variants of each
method. We have used a statistical test to identify significant pairwise differences between methods, and we
therefore believe that our rankings are reliable. Furthermore, the agreement between the relative ranking of
methods in our study and those in a previous large-scale study suggests that the rankings should withstand
differences in methodology.

Our method, under a squared-error metric, performed well in our experiment, with rankings in the upper half
of all methods. On the other hand, the relative-entropy metric performed relatively poorly, with rankings in the
lower half of all methods. One possible explanation is that the relative-entropy metric uses relative accuracies
of frequency estimates, so it emphasizes smaller frequencies at the expense of larger ones. However, the
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larger frequencies are the ones most likely to occur in a given family. A squared-error metric, which measures
absolute accuracies, appears to be more appropriate for finding homologs.

Our study also looked at the effect of sequence weighting and of different substitution matrices. In general,
sequence weighting had a relatively minor effect on performance, compared with the choice of method. One
exception was the Dirichlet-mixture method, where sequence weighting was critical to the success of the
method. The BLOSUM 100 matrix performed better than the BLOSUM 62 matrix, which in turn performed
better than the BLOSUM 30 matrix. However, the ultimate choice of a substitution matrix may depend on
the evolutionary distance desired. The BLOSUM 100 matrix may be more suitable for finding homologs that
are close in evolutionary distance, whereas the BLOSUM 30 matrix may be better for finding more distant
homologs. Because our method is not fine-tuned for a particular substitution matrix, it should give consistent
results over a range of evolutionary distances.

Pseudocount methods, including ours, depend on the value of N, the number of sequences in the block.
However, this estimate of N assumes that the sequences are independent observations from an underlying
distribution. Often, sequences are not independent, which in fact is one of the motivations for sequence
weighting. Altschul et al. (1997) propose that an “effective” size N¢ should be used instead, and they describe
a method for estimating this value. An effective size could be incorporated into our method, as well as other
pseudocount methods, and this modification may have changed our empirical results. We believe that this
issue is important and worthy of further investigation.

Estimation of amino acid frequencies is challenging because it requires search in a 19-dimensional space.
(One degree of freedom is constrained by requiring that frequencies sum to 1.) Single-parameter pseudocount
methods reduce the problem to a search along one dimension, which is oriented in a biologically meaningful
direction by an appropriate choice of pseudofrequencies. Approaches that use higher-dimensional search
spaces, such as the nine-component Dirichlet-mixture method, are possible, and we could extend the minimal-
risk theory to handle such an approach. However, too much freedom in the search process can worsen
performance through overfitting, whereby extra parameters model noise in the observed data, resulting in
higher variance and lower quality of the estimates.

Accurate frequéncy estimates are central to many problems in computational biology. Our theory not only
produces minimal-risk scoring matrices for finding homologs and analyzing sequences, but also generates
frequency estimates that may be used for aligning sequences or discovering conserved regions in protein
families. Our frequency estimates may be used as the basis for hidden Markov models (Krogh et al., 1994) or
Gibbs sampling techniques (Lawrence et al., 1993). By characterizing conservation and variability in protein
families, minimal-risk estimation may lead not only to more accurate tools for protein sequence analysis, but
also to a better understanding of the evolutionary process.

A. APPENDIX

In this Appendix, we derive closed-form solutions for the squared-error metric (Equation 8) and provide
details for the numerical solution for the relative-entropy metric.

A.1. Squared-error metric: background pseudofrequencies

We begin with the equation for risk using a squared-error metric and background pseudofrequencies q:

20

R=Y E(p;-p;)’ a2
j=1
20

= Y E(@Cj/N +Bg;) — p;)’ (13)

j=1
20

=Y E[o®C3/N? + B%q} + p? +2aBC;q,;/N —2aC;p;/N — 284, p;] (14)
j=1
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Note that C; is a set of random variables, generated according to a multinomial distribution with parameters
p- In order to compute the expected values involving C;, we require the following lemma:

Lemmal. Let C~ Mult(N,p) be a set of counts generated by a multinomial distribution with parameters

P = (p1, ..., p:). Then the following expectations hold:
E(C;) = Np; 15)
E(C) = Np; + N(N — 1)p3 (16)
E(CiCt) = N(N —Dpjpc forj#k a7

Proof. These quantities follow from the fact that C; equals the sum of N independent Bernoulli trials,
each with probability p; of success. Therefore, C; = Y _, ¥ in» Where the result of the nth trial, ¥;,, equals
1 with probability p; and 0 otherwise. The lemma follows from using the Bernoulli sum, and observing that
Yjm and Y, are independent for m # n, and that Y, and Yy, cannot both equal 1 for j #k. |

We substitute the results of Lemma 1 into Equation 14 to obtain

R i g2 PP+ N(p; —q))"

N —2Bp;i(1 — p;)+ p;(1 — p;) (18)

i=1

We differentiate with respect to 8 and set the result equal to zero to obtain the value for 8 that minimizes R.

A.2. Squared-error metric: substitution pseudofrequencies

When the pseudofrequencies are based on a substitution matrix, we have the following risk function:

20 20 B
R = 2::E[a2C?/Aﬂ-fﬂz(zz:ALkC%/N) ﬁ-p?

ji=1 k=1

20 20
+2aBC; Y M Ci/N —20C;p;/N —26p; Y . M,-ka/N} (19)
k=1 k=1

In order to compute the expected values in this formula, we require Lemma 1 as well as the following
lemma:

Lemma 2. Let M be at x t matrix with entries M jy. Define the following quantities:
t
ri=Y Mup (20)
k=1

t
5= My @
k=1

Then the following expectations hold:

t
E(ZM”‘C") = NSJ' (22)
k=1
t 2 t
E( > Mjkck) = N[Z M3, pi + (N — 1)sf} (23)
k=1 k=1

t
E(Cj > M,kck) = Nl:ijPj + (N — l)Pij] (24)
k=1
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Proof. Equation 22 follows from applying Equation 15 to the left-hand side. Equation 23 follows by
expanding its left-hand side as follows

t t
E ( Yo MRCE+Y Y MjijleCl)
k=1 k=11#k
and substituting Equations 16 and 17. Equation 24 follows by expanding its left-hand side as follows
E(M,-jcf. +y M,-kc,-ck>
k#j
and subsﬁtuting Equations 16 and 17. ]

We apply Lemmas 1 and 2 to Equation 19 to obtain
R = (DB? —2EB + F)/N (25)
where

20 20
D=1+)_ |:(N — 1)(p; —s;* —2Mj;p; + ) M}kpk]
ji=1 k=1

2
E=1-)[pj(pj —s;)+ Mj;p;]
j=1

20
F=1-37
j=1

We differentiate with respect to 8 and set the result equal to zero to obtain the value for 8 that minimizes risk.

A.3. Relative-entropy metric: background pseudofrequencies

The equation for risk using a relative-entropy metric and background frequencies q is

aCj/N-i-ﬁqj))

Pj

20

R = Z E((oij/N +ﬂqi)108(

=1

(26)

Again, the vector C obeys a multinomial distribution with parameters N and p. However, we can also view
each quantity C; as a random variable that obeys a binomial distribution with parameters N and p;. Let
x=Cj/N. Then, we wish to find the expectation E[f(x)] of a function of a binomial variable, where the
function is

ox + i
£) = @x + g log 2L @
J
This type of problem was solved recently by Abe (1996). He used a Taylor expansion to show that
C S FOMPHE[C; — Npj)]
E Y ~ J J 28
()5 )
where K is the order of the approximation.

For our particular problem, we use the following quantities:
fOpy) = a(l +log “—’iiﬂﬁ) 29)

Pj

® o’
fopj) = ———7— (30)
" apj + Bg;
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ol

Oy = RCTIETTR? 31

4
Ay = m (32)
E[(C; —Np)'] = (33)
E[(C; — Np))*] = Np;(1 — p)) (34)
E[(C; — Np;’] = Np;(1 — pj)(1 —2p)) (35)
E[(C; — Npj)*] = Np;(1 — pp)I1 +3(N —2)p;(1 — p))] - (36)

If we substitute these quantities into Equation 28 and then into Equation 26, we obtain a fourth-order approx-
imation for relative-entropy risk:

(apj + ﬂqj) + @’pi(1 —pj)  &p;(1—pj)1—2p))

20
R =~ (ap; + Bg;)lo
2_(p; +palog 2N(ap; + Bg;) 6N2(ap; + Bg;)?

a‘p;i(1— pHIl+3(N —2)p;j(1 - pp]
12N3(ap; + Bq;)»?

(37

For a particular problem, we may use numerical techniques to find values for ¢ and 8 that minimize risk,
subject to the constraint that  + 8 = 1.

A.4. Relative-entropy metric: substitution pseudofrequencies

For substitution pseudofrequencies, our risk function becomes

k= ZE[(W—JrﬂZM,r-) i P T "‘”] (38)

j=1 pPj

In contrast with Equation 26, this equation for risk is nonlinear in C; and therefore cannot be expressed strictly
as a sum of expectations of single binomial variables. However, we can make an approximation that has the
correct format by ignoring the dependency between C; and Cj within each term. Therefore, we treat Cy, as
constant within the jth term, for j # k. We may then apply Equation 28 as before, by taking derivatives with
respectto C;/N:

M;:)p; M C,/N
FOp)) = @+ ﬂMj,-)(l +10g X EPMPI f Lap MinCel ) (39)
J
@¢r ) — (ot+ﬂij)2 40
7o) (@ + BM;j)p; + B34z MixCi/N @0
M;)
O =— @+ AM;) ; @1
(e + BM;)p; + B Y2 ; MjxCi/N)
)4
) = 20+ AM;)) 42)

(@ +BMjppj+BYis; chk/N)
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This approximation yields the following formula for risk:

>1og((°‘ +BMi)p;+ B, M,-kck/N)

20
R~ ((a +BM;j)p;+B Y MjCi/N

=1 Py
(@ + BM;)*p;(1 — p;)
2N((¢ + BM;j)p; + B 2kt M;iCy/N)
(e +BM;)’pi( - p)(1 —2p))
6N2((@+ BMp; +BY 1y, Mkak/N)2
(@ +BM;)*p;(1 — p)IL +3(N —2)p;(1 — p))]
12N3((@ + BM)p; + B Ly ; MiCi/N)’

We may use numerical techniques to obtain values of & and g8 that minimize risk, subject to the constraint
a+B=1

Pj

43)
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